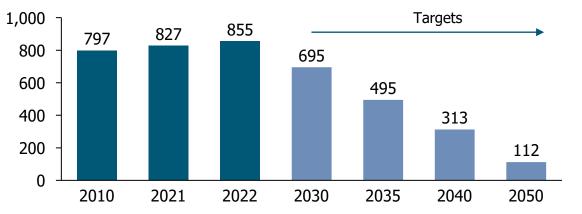
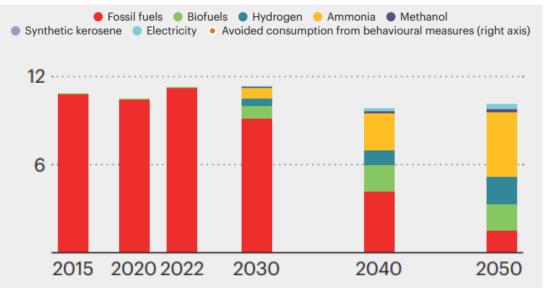
# Allseas

Allseas nuclear developments


March 2025

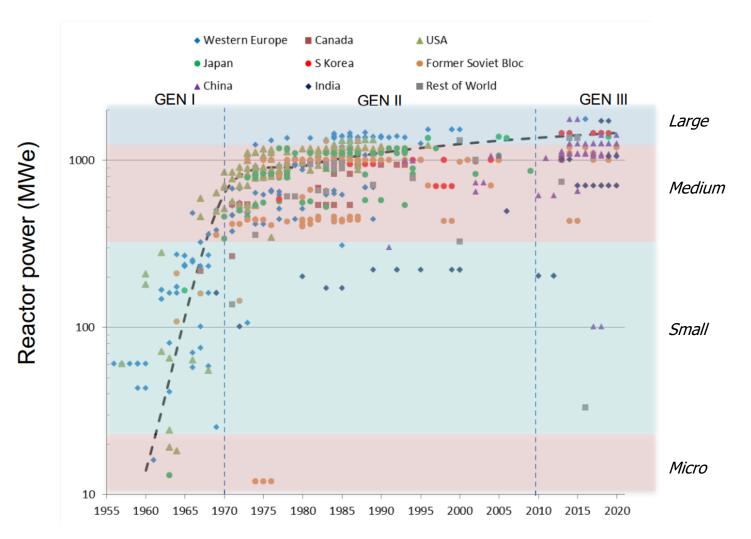


The best investment in reliable and scalable carbon-free energy is nuclear




### Maritime industry faces major challenges to align with targets




#### **Emissions from international shipping (Mt CO<sub>2</sub>)**

#### Shipping energy consumption (EJ)



- International shipping uses ~300 million tonnes of fossil fuels yearly corresponding to ~3% of global ghg emissions
- 80% of emissions by 13% of global fleet
- IMO target to reduce CO<sub>2</sub> emissions by at least 20% by 2030 and 70% by 2040, compared to 2008
- Strategy based on energy efficiency and increased uptake of zero or near zero emission fuels
- Producing green fuel for shipping will require 2.7 times the total EU electricity demand in 2022
- Alternative fuels are not a solution for large vessels that stay offshore for long durations

#### In the beginning there were only small reactors..



#### Today we are looking at SMRs (<300MWe) and GenIV technologies:

- **Safety**: improved & passive safety systems, accident tolerant fuels, less radioactive material, smaller incident consequences
- **Economics**: lower capex, scalability, standardization, lower operating cost
- **Versatility**: modularity, wider range of applications, transportation

# For large consumers spending a lot of time offshore – nuclear is the only way



- Carbon-free
- Reliable
- Refuelling cycle of years
- Cost effective??







PATHWAYS TO A LOW CARBON FUTURE LNG CARRIER NUCLEAR SHIP CONCEPT DESIGN | ABS / HEC 2024

# Many initiatives worldwide exploring nuclear power for maritime industry

#### LR, Core Power and Maersk look into nuclear container ship propulsion

by Mariska Buitendijk | Aug 16, 2024 | Emissions, Energy transition, Marine fuels, Maritime research, News, Nuclear, Ship propulsion

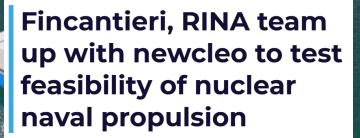
Offshore nuclear power concept under development by

Conceptual art of the Crowley-designed ship with a BWXT microreactor onboard. (Image: BWXT)

Nuclear-power container shipping could be possible within the decade

Article by Aniqah Majid




#### New Nuclear SMR-Powered Ships Project from 2024

KRISO launched a new research program to develop small modular reactors, SMR-powered ships and floating SMR power generation platforms.

 ${\mathscr Q}$  SHIPNERD  $\cdot$  (S) APRIL 17, 2024  $\cdot$  (E) ENERGY & COMPLIANCE, NAVAL & ENGINEERING

# Saipem studies nuclear power offshore applications

10 Sep 2024 by Martyn Wingrove



**BUSINESS DEVELOPMENTS & PROJECTS** 

#### Nuclear powered vessels are not new..

1962 – 1972 NS Savannah – demonstrator general cargo ship

1968 – 1975 USS Sturgis – Panama canal power barge 10MW

1968 – 1979 Otto Hahn – demonstrator bulk cargo ship

1969 Mutsu – demonstrator

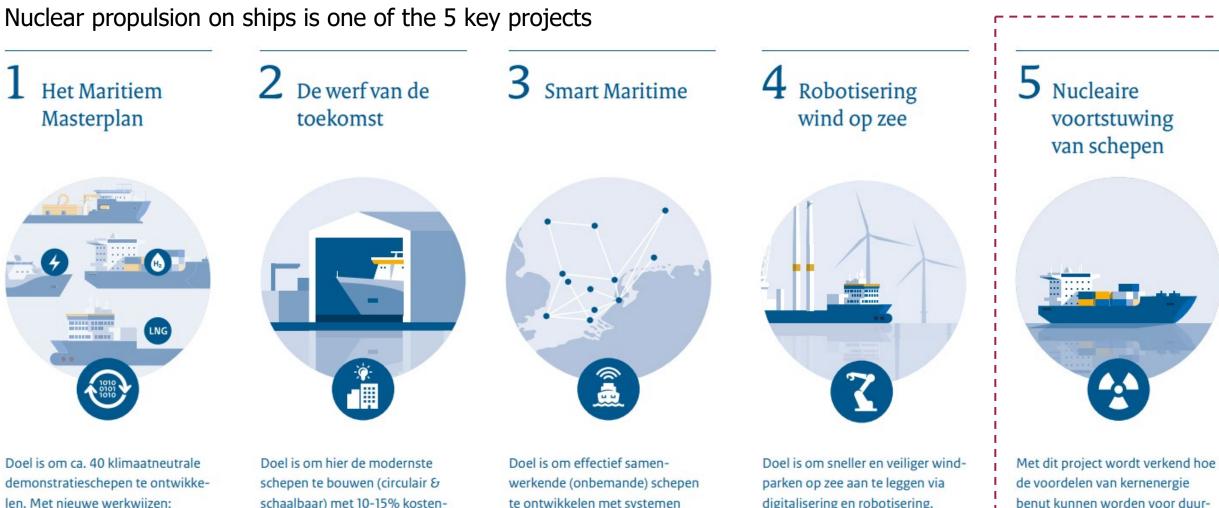
Current Russian icebreakers & power barge(s)

Current 100's of naval vessels

All based on PWR technology








### **Opportunities for The Netherlands**

- Clean and reliable energy for maritime sector and industrial clusters, e.g. ports
- Economic development
- Strategic autonomy
- Defence



# **Dutch sector agenda Maritieme Maakindustrie - koploperprojecten**



demonstratieschepen te ontwikkelen. Met nieuwe werkwijzen: cyclisch, modulair en digitaal.

schaalbaar) met 10-15% kostenreductie via o.m. digitalisering & robotisering. Tevens helpt dit het personeelstekort op te lossen.

te ontwikkelen met systemen voor maritieme veiligheid (safety) en beveiliging (security).

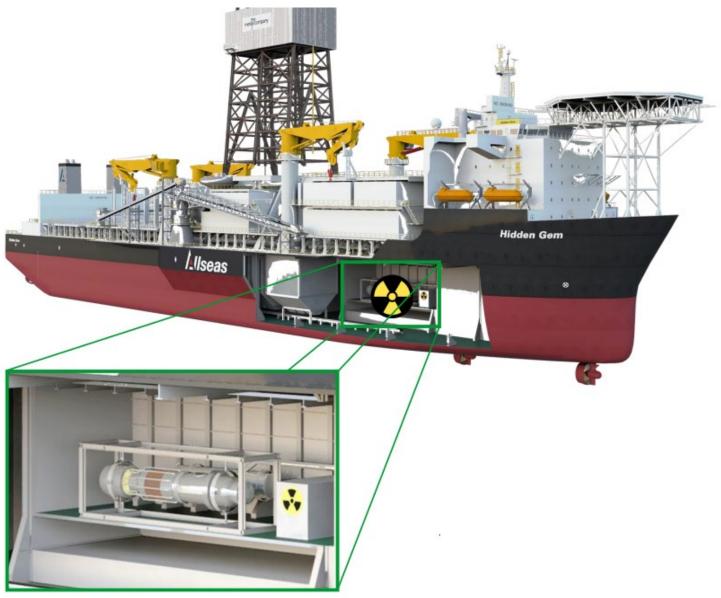
digitalisering en robotisering.

zaam varende schepen met

permanente energievoorziening.

### "Fasttrack" design and development of offshore nuclear reactor

- 40 years of maritime experience
- Unique innovative and complex project management capabilities
- Committed to sustainability and the economic strengthening of the maritime sector and industrial clusters/ports






# Technology

#### **Target system design requirements**

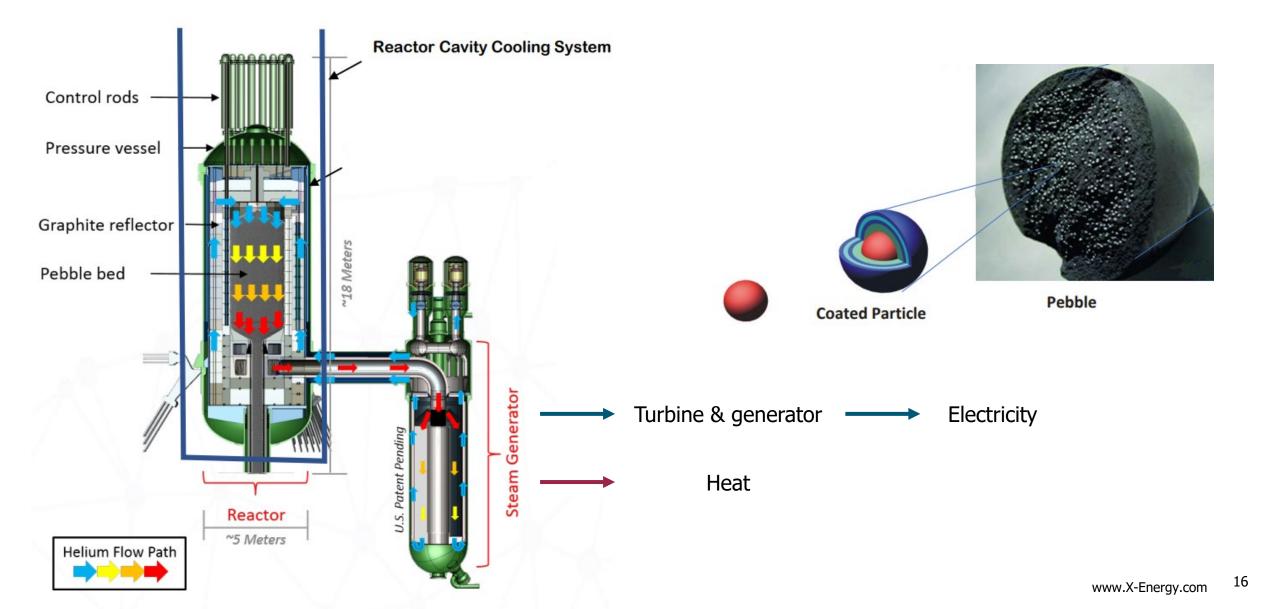
- Small Modular Reactor 25MW electric
- Inherently safe reactor should cool down itself in case of malfunction
- High technology readiness level no scientific challenges, only engineering
- Size of reactor should be workable on vessel
- "Plug & Play" Connection to existing infrastructure of the engine rooms and the power distribution systems/switch boards



# Safety is the key driver for our chosen technology: HTGR

#### • Inherent safety and security features

- TRISO fuel to contain fissile material
- Negative temperature coefficient
- Passive cooling
- Coolant decoupled from neutronics




#### And other benefits that make it the better choice

- The **Emergency Planning Zone** can be limited to the vessel size enabling harbour access due to its safety features
- **High technology readiness level** benefit regulatory process as well as time to completion. The technology is developed since the 1960's.
- High operating temperatures facilitate use of heat (up to 950C) for industry or hydrogen generation on-land as alternative market

### High temperature gas cooled reactor explained





#### Scenario's that we review

٠

٠

•

٠

|                                                                                          | Vessel type                   | Installed power |
|------------------------------------------------------------------------------------------|-------------------------------|-----------------|
| Large vessels with high power demand                                                     | FPSO's                        | 25 – 150 MWe    |
| Long duration at sea<br>Operating mainly in international waters, no inland<br>waterways | Container vessels             | 25 – 80 MWe     |
|                                                                                          | Drill ships                   | 40 – 50 MWe     |
|                                                                                          | Offshore construction vessels | 20 – 100 MWe    |
| International regulatory landscape poses risk for timeline                               | Dredgers and pipelay          | 5 – 50 MWe      |
|                                                                                          | vessels                       |                 |
| Power barges providing power to regions with temporal                                    |                               |                 |

Power barges

Vessels

-

- \_ ...... \_
- In port, decentral supply for incoming transport or intra harbour transport

Licensing likely a lot easier

power requirement



 Heat and/or electricity supply for industry-intensive zones (like PoR)

Licensing not an issue

#### 18

# Nuclear growth may be significant; if SMRs are successfully deployed

#### IAEA projection for global nuclear electrical generating capacity

1 0 0 0 X% - Nuclear as % of total 4.7% electrical capacity 900 800 5.0% 700 600 GW(e) 4.6% 500 2.5% 3.6% 400 4.1% 4.1% 300 200 100 0 2023 2030 2040 2050

- Nuclear electrical generating capacity is projected to increase between 25% and 2.5 times by 2050 compared to 2023
- Regulation and cost will be key drivers